An Introduction to Multilevel Modeling in Health Psychology Using R
DOI:
https://doi.org/10.22544/rcps.v44i02.10Keywords:
Health Psychology, Health behavior, Physical activity, Multilevel analysis, Multilevel regressionAbstract
The use of conventional statistical techniques, such as analysis of variance (ANOVA) or ordinary least squares regression, can lead to erroneous conclusions and biased results when there is nested data, such as patients in hospitals or adults in neighborhoods. Multilevel modeling allows this complexity to be addressed by examining relationships between variables at different levels of a hierarchical data structure. This article describes the basic concepts of multilevel analysis through applications in health psychology using the program R. Different multilevel regression models are illustrated using simulated data. The materials are available online. The results of the analysis represent the predictive between-group and within-group effects of neighborhood exercise area availability and behavioral intention on physical activity in adults sampled from different neighborhoods. The implementation of multilevel models can contribute to the understanding of behavior change and intervention strategies for the prevention of chronic diseases.References
Aparicio, A., & Morera, M. (2006). La conveniencia del análisis multinivel para la investigación en salud: una aplicación para Costa Rica. Población y Salud en Mesoamérica, 4(2). https://doi.org/10.15517/psm.v4i2.4556
Asparouhov, T., Hamaker, E. L., & Muthén, B. (2018). Dynamic Structural Equation Models. Structural Equation Modeling: A Multidisciplinary Journal, 25(3), 359-388. https://doi.org/10.1080/10705511.2017.1406803
Bates, D., Maechler, M., Bolker, B., & Walker, S. (2015). Fitting Linear Mixed-Effects Models Using lme4. Journal of Statistical Software, 67(1), 1-48. https://doi.org/10.18637/jss.v067.i01
Bell, B., & Schoeneberger, J. (2022). Introduction to Multilevel Models for Organizational Data. En A. O’Connell, D. McCoach, & B. Bell (Eds.), Multilevel Modeling Methods With Introductory and Advanced Applications (pp. 13-50). Information Age Publishing.
Cohen, J., Cohen, P., West, S., & Aiken, L. (2003). Applied Multiple Regression/Correlation Analysis for the Behavioral Sciences (3rd ed.). Lawrence Erlbaum Associates.
Finch, H. (2017). Multilevel modeling in the presence of outliers: A comparison of robust estimation methods. Psicológica, 38(1), 57-92.
Finch, W., Bolin, J., & Kelley, K. (2019). Multilevel Modeling Using R (2nd ed.). Taylor & Francis Group.
Finch, W. H., & French, B. F. (2014). Multilevel Latent Class Analysis: Parametric and Nonparametric Models. The Journal of Experimental Education, 82(3), 307-333. https://doi.org/10.1080/00220973.2013.813361
Geiser, C. (2013). Data Analysis with Mplus. The Guilford Press.
Hancock, G., Stapleton, L., & Mueller, R. (2019). The Reviewer’s Guide to Quantitative Methods in the Social Sciences (2nd ed.). Routledge.
Heck, R., & Thomas, S. (2020). An Introduction to Multilevel Modeling Techniques (4th ed.). Routledge.
Hoffman, L. (2014). Longitudinal Analysis Modeling Within-Person Fluctuation and Change (1st ed.). Routledge.
Hox, J., Moerbeek, M., & van de Schoot, R. (2018). Multilevel Analysis Techniques and Applications (3rd ed.). Routledge.
Jacqmin-Gadda, H., Sibillot, S., Proust, C., Molina, J.-M., & Thiébaut, R. (2007). Robustness of the linear mixed model to misspecified error distribution. Computational Statistics & Data Analysis, 51(10), 5142-5154. https://doi.org/https://doi.org/10.1016/j.csda.2006.05.021
Kajosaari, A., & Laatikainen, T. E. (2020). Adults’ leisure-time physical activity and the neighborhood built environment: A contextual perspective. International Journal of Health Geographics, 19(1). https://doi.org/10.1186/s12942-020-00227-z
Kim, S. Y., Jang, M., Yoo, S., JeKarl, J., Chung, J. Y., & Cho, S. (2020). School-Based Tobacco Control and Smoking in Adolescents: Evidence from Multilevel Analyses. International Journal of Environmental Research and Public Health, 17(10). https://doi.org/10.3390/ijerph17103422
Kumle, L., Võ, M., & Draschkow, D. (2021). Estimating power in (generalized) linear mixed models: An open introduction and tutorial in R. Behavior Research Methods, 53, 2528-2543. https://doi.org/10.3758/s13428-021-01546-0/Published
Kuznetsova, A., Brockhoff, P. B., & Christensen, R. H. B. (2017). lmerTest Package: Tests in Linear Mixed Effects Models. Journal of Statistical Software, 82(13), 1-26. https://doi.org/10.18637/jss.v082.i13
Lin, Y.-H., Hsu, H.-C., Bai, C.-H., & Wu, W.-C. (2022). Dietary Patterns among Older People and the Associations with Social Environment and Individual Factors in Taiwan: A Multilevel Analysis. International Journal of Environmental Research and Public Health, 19(7). https://doi.org/10.3390/ijerph19073982
LoPilato, A. C., & Vandenberg, R. J. (2015). The not-so-direct cross-level direct effect. In C. E. Lance & R. J. Vandenberg (Eds.), More statistical and methodological myths and urban legends (pp. 292-310). Routledge/Taylor & Francis Group.
Lüdtke, O., Robitzsch, A., & Grund, S. (2017). Multiple imputation of missing data in multilevel designs: A comparison of different strategies. Psychological Methods, 22(1), 141-165. https://doi.org/10.1037/met0000096
Luke, D. (2020). Multilevel modeling (2nd ed.). SAGE Publications.
Maruyama, G. (1998). Basics of Structural Equation Modeling. SAGE.
Mulder, J. D., & Hamaker, E. L. (2021). Three Extensions of the Random Intercept Cross-Lagged Panel Model. Structural Equation Modeling: A Multidisciplinary Journal, 28(4), 638-648. https://doi.org/10.1080/10705511.2020.1784738
Murillo, F. (2008). Los modelos multinivel como herramienta para la investigación educativa. Magis, Revista Internacional de Investigación En Educación, 1, 45-62.
Nezlek, J. B. (2008). An Introduction to Multilevel Modeling for Social and Personality Psychology. Social and Personality Psychology Compass, 2(2), 842-860. https://doi.org/10.1111/j.1751-9004.2007.00059.x
O’Connell, A., McCoach, D., & Bell, B. (2022). Introduction to Multilevel Modeling Methods: Pedagogy and Context. En A. O’Connell, D. McCoach, & B. Bell (Eds.), Multilevel Modeling Methods With Introductory and Advanced Applications (pp. 1-13). Information Age Publishing.
Oliver, J., Rosel, J., & Jara, P. (2000). Modelos de regresión multinivel: aplicación en psicología escolar. Psicothema, 12(3), 487-494.
Pardo, A., Ruíz, M., & San Martín, R. (2007). Cómo ajustar e interpretar modelos multinivel con SPSS. Psicothema, 191(2), 308-321.
Pedersen, E. J., Miller, D. L., Simpson, G. L., & Ross, N. (2019). Hierarchical generalized additive models in ecology: An introduction with mgcv. PeerJ, 7(e6876). https://doi.org/10.7717/peerj.6876
Peugh, J. L. (2010). A practical guide to multilevel modeling. Journal of School Psychology, 48(1), 85-112. https://doi.org/10.1016/j.jsp.2009.09.002
Raudenbush, S., & Bryk, A. (2002). Hierarchical Linear Models: Applications and Data Analysis Methods (2nd ed.). Sage Publications.
Rhodes, R. E., & Dickau, L. (2013). Moderators of the intention-behaviour relationship in the physical activity domain: a systematic review. British Journal of Sports Medicine, 47(4), 215-225. https://doi.org/10.1136/bjsports-2011-090411
Rights, J., & Sterba, S. (2019). Quantifying Explained Variance in Multilevel Models: An Integrative Framework for Defining R-Squared Measures. Psychological Methods, 24(3), 309-338. https://doi.org/10.1037/met0000184.supp
Schielzeth, H., Dingemanse, N. J., Nakagawa, S., Westneat, D. F., Allegue, H., Teplitsky, C., Réale, D., Dochtermann, N. A., Garamszegi, L. Z., & Araya-Ajoy, Y. G. (2020). Robustness of linear mixed-effects models to violations of distributional assumptions. Methods in Ecology and Evolution, 11(9), 1141-1152. https://doi.org/10.1111/2041-210X.13434
Snijders, T., & Bosker, R. (2012). Multilevel Analysis: An Introduction to Basic and Advanced Multilevel Modeling (2nd ed.). SAGE Publications.
Downloads
Published
How to Cite
Issue
Section
License

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
El Colegio, como institución editora, tiene todos los derechos reservados (copyright) sobre lo que se publica en la revista. Los autores y las autoras firman una declaración de cesión de derechos de autoría en el caso de aceptación de sus manuscritos para publicación en la revista, conforme con lo establecido en la legislación vigente.
Los artículos publicados representarán el punto de vista de su autoría y no de la revista, por lo que la autoría asume responsabilidad ante cualquier litigio o reclamación relacionada con derechos de propiedad intelectual y exonera de cualquier responsabilidad a la Revista Costarricense de Psicología y al Colegio.
La revista publicará en cada edición su política de acceso abierto (p.ej., Creative Commons). El material publicado en la revista puede ser copiado, fotocopiado, duplicado y compartido siempre y cuando sea expresamente atribuido al Colegio. El material de la revista no puede ser usado para fines comerciales.

