Brain electrical activity of information maintenance mechanisms in working memory: a systematic review

Authors

DOI:

https://doi.org/10.22544/rcps.v44i01.13

Keywords:

working memory, brain electrical activity, electroencephalography, attentional refreshing, subvocal rehearsal, elaboration, systematic review

Abstract

The documented limitations of working memory have fostered the study of the neurophysiological correlates of information maintenance. Various researchers have evaluated brain activity using different methodologies, making a comprehensive evaluation of the findings necessary. In this systematic review, we analyzed brain activity in studies that include subvocal rehearsal, attentional refreshing, and elaboration as mechanisms of information maintenance. Additionally, we examined the theoretical and operational consistency of these mechanisms across different studies. We conducted the literature review between July 5, 2023, and April 2, 2024, in databases such as EBSCOHost, ScienceDirect, Pubmed, Proquest, Redalyc, Scielo, PsyArxiv, PsycNet, Springerlink, and GoogleScholar. We selected published studies, preprints, or theses with experimental or quasi-experimental designs that focusedon mechanisms of working memory maintenance and analyzed brain activity. The 21 included studies showed a reasonable methodological rigor (Range = 15-24). We identified that, during maintenance periods, there was modulation of activity in ERP components, in different frequency bands, and synchronization of activity in various brain regions. Most studies referenced the phonological loop and sustained attention as mechanisms of subvocal rehearsal and attentional refreshing, respectively. Regarding elaboration, the two included articles characterized it as the brain and cognitive activity during maintenance intervals. With this work, we seek to promote research agendas that better integrate theory and findings in this field.

Author Biographies

Bradly Marín-Picado, Universidad de Costa Rica, San José, Costa Rica

Professor and researcher at the School of Psychology and as a laboratory technician at the Center for Neuroscience Research at the University of Costa Rica. He holds a Master's degree in Cognitive Sciences and a Bachelor's degree in Psychology from the University of Costa Rica. His research focuses on the use of physiological recording methodologies (such as electroencephalography) for the study of cognitive and emotional processes, as well as the development of meta-analyses in Health Psychology and Cognitive Psychology. He also participates in projects focused on working memory, neurofeedback, and statistical analysis of experimental data.

Odir Antonio Rodríguez-Villagra, Universidad de Costa Rica, San José, Costa Rica

He holds a PhD from the University of Potsdam in Germany. He is currently the director of the Center for Neuroscience Research and was the director of the Graduate Program in Cognitive Sciences at the University of Costa Rica. He is also a researcher at the Institute of Psychological Research and a professor at the School of Psychology, the Graduate Program in Cognitive Sciences, and other academic units at the University of Costa Rica. His research currently focuses on understanding the factors that limit working memory capacity and the processes that assist with information retention. He approaches these aspects methodologically through statistical modeling, mathematical modeling, electroencephalography studies, and eye movement recording.

Luis Carlos González Flores , Universidad de Costa Rica, San José, Costa Rica

Advanced student at the University of Costa Rica. He holds bachelor's degrees in Psychology and Statistics from the University of Costa Rica. His academic and professional interests focus on data analysis, applied statistics, and the development of computational tools for research in psychology and social sciences.

References

Baddeley, A. D., & Hitch, G. (1974). Working Memory. En Psychology of Learning and Motivation (Vol. 8, pp.

-89). Elsevier. https://doi.org/10.1016/S0079-7421(08)60452-1

Bae, G.-Y., & Luck, S. J. (2018). Dissociable Decoding of Spatial Attention and Working Memory from EEG Oscillations and Sustained Potentials. The Journal of Neuroscience, 38(2), 409-422. https://doi.org/10.1523/JNEUROSCI.2860-17.2017

Barrouillet, P., Bernardin, S., Portrat, S., Vergauwe, E., & Camos, V. (2007). Time and cognitive load in working memory. Journal of Experimental Psychology: Learning, Memory, and Cognition, 33(3), 570-585. https://doi.org/10.1037/0278-7393.33.3.570

Bartsch, L. M., Singmann, H., & Oberauer, K. (2018). The effects of refreshing and elaboration on working memory performance, and their contributions to long-term memory formation. Memory & Cognition, 46(5), 796-808. https://doi.org/10.3758/s13421-018-0805-9

Bayliss, D. M., Bogdanovs, J., & Jarrold, C. (2015). Consolidating working memory: Distinguishing the effects of consolidation, rehearsal and attentional refreshing in a working memory span task. Journal of Memory and Language, 81, 34-50. https://doi.org/10.1016/j.jml.2014.12.004

Bittrich, K., Schulze, K., & Koelsch, S. (2012). Electrophysiological correlates of verbal and tonal working memory. Brain Research, 1432, 84-94. https://doi.org/10.1016/j.brainres.2011.11.011

Boran, E., Fedele, T., Klaver, P., Hilfiker, P., Stieglitz, L., Grunwald, T., & Sarnthein, J. (2019). Persistent hippocampal neural firing and hippocampal-cortical coupling predict verbal working memory load. Science Advances, 5(3), eaav3687. https://doi.org/10.1126/sciadv.aav3687

Camos, V., Johnson, M., Loaiza, V., Portrat, S., Souza, A., & Vergauwe, E. (2018). What is attentional refreshing in working memory? Annals of the New York Academy of Sciences, 1424(1), 19-32. https://doi.org/10.1111/nyas.13616

Camos, V., Lagner, P., & Barrouillet, P. (2009). Two maintenance mechanisms of verbal information in working memory. Journal of Memory and Language, 61(3), 457-469. https://doi.org/10.1016/j.jml.2009.06.002

Cohen, M. X. (2014). Analyzing neural time series data: Theory and practice. The MIT Press.

Costa, T., Rognoni, E., & Galati, D. (2006). EEG phase synchronization during emotional response to positive and negative film stimuli. Neuroscience Letters, 406(3), 159-164. https://doi.org/10.1016/j.neulet.2006.06.039

Cowan, N. (1999). An Embedded-Processes Model of Working Memory. En A. Miyake & P. Shah (Eds.), Models of Working Memory (1a ed., pp. 62-101). Cambridge University Press. https://doi.org/10.1017/CBO9781139174909.006

Cowan, N. (2001). The magical number 4 in short-term memory: A reconsideration of mental storage capacity. Behavioral and Brain Sciences, 24(1), 87-114. https://doi.org/10.1017/S0140525X01003922

Dickter, C. L., & Kieffaber, P. D. (2014). EEG methods for social and personality psychology. SAGE Publications.

Dimakopoulos, V., Mégevand, P., Stieglitz, L. H., Imbach, L., & Sarnthein, J. (2022). Information flows from hippocampus to auditory cortex during replay of verbal working memory items. eLife, 11, e78677. https://doi.org/10.7554/eLife.78677

Fernandez, T., Harmony, T., Gersenowies, J., Silva-Pereyra, J., Fernández-Bouzas, A., Galán, L., & Díaz-Comas, L. (2002). Chapter 41 Sources of EEG activity during a verbal working memory task in adults and children. En Supplements to Clinical Neurophysiology (Vol. 54, pp. 269-283). Elsevier. https://doi.org/10.1016/S1567-424X(09)70461-1

Gao, Z., Bentin, S., & Shen, M. (2015). Rehearsing Biological Motion in Working Memory: An EEG Study. Journal of Cognitive Neuroscience, 27(1), 198-209. https://doi.org/10.1162/jocn_a_00687

Gilbert, R. A. (2014). Temporal properties of rehearsal in auditory verbal short-term memory. [Tesis de doctorado inédita, Universidad de York].

Griesmayr, B., Gruber, W. R., Klimesch, W., & Sauseng, P. (2010). Human frontal midline theta and its synchronization to gamma during a verbal delayed match to sample task. Neurobiology of Learning and Memory, 93(2), 208-215. https://doi.org/10.1016/j.nlm.2009.09.013

Herrmann, C. S., Senkowski, D., & Röttger, S. (2004). Phase-Locking and Amplitude Modulations of EEG Alpha: Two Measures Reflect Different Cognitive Processes in a Working Memory Task. Experimental Psychology, 51(4), 311-318. https://doi.org/10.1027/1618-3169.51.4.311

Johnson, M. R., McCarthy, G., Muller, K. A., Brudner, S. N., & Johnson, M. K. (2015). Electrophysiological Correlates of Refreshing: Event-related Potentials Associated with Directing Reflective Attention to Face, Scene, or Word Representations. Journal of Cognitive Neuroscience, 27(9), 1823-1839. https://doi.org/10.1162/jocn_a_00823

Lemaire, B., Pageot, A., Plancher, G., & Portrat, S. (2018). What is the time course of working memory attentional refreshing? Psychonomic Bulletin & Review, 25(1), 370-385. https://doi.org/10.3758/s13423-017-1282-z

Luna, A. J. H. de O., Kruchten, P., Pedrosa, M. L. G. do E., de Almeida Neto, H. R., & de Moura, H. P. (2014). State of the Art of Agile Governance: A Systematic Review. International Journal of Computer Science and Information Technology, 6(5), 121-141. https://doi.org/10.5121/ijcsit.2014.6510

Martínez-Briones, B., Fernández-Harmony, T., Garófalo Gómez, N., Biscay-Lirio, R., & Bosch-Bayard, J. (2020). Working Memory in Children with Learning Disorders: An EEG Power Spectrum Analysis. Brain Sciences, 10(11), 817. https://doi.org/10.3390/brainsci10110817

Niso, G., Bruña, R., Pereda, E., Gutiérrez, R., Bajo, R., Maestú, F., & del-Pozo, F. (2013). HERMES: Towards an Integrated Toolbox to Characterize Functional and Effective Brain Connectivity. Neuroinformatics, 11(4), 405-434. https://doi.org/10.1007/s12021-013-9186-1

Nyhus, E., & Curran, T. (2010). Functional role of gamma and theta oscillations in episodic memory. Neuroscience & Biobehavioral Reviews, 34(7), 1023-1035. https://doi.org/10.1016/j.neubiorev.2009.12.014

Oberauer, K. (2019). Is Rehearsal an Effective Maintenance Strategy for Working Memory? Trends in Cognitive Sciences, 23(9), 798-809. https://doi.org/10.1016/j.tics.2019.06.002

Oberauer, K., & Lewandowsky, S. (2013). Evidence against decay in verbal working memory. Journal of Experimental Psychology: General, 142(2), 380-411. https://doi.org/10.1037/a0029588

Oberauer, K., Lewandowsky, S., Awh, E., Brown, G. D. A., Conway, A., Cowan, N., Donkin, C., Farrell, S., Hitch, G. J., Hurlstone, M. J., Ma, W. J., Morey, C. C., Nee, D. E., Schweppe, J., Vergauwe, E., & Ward, G. (2018). Benchmarks provide common ground for model development: Reply to Logie (2018) and Vandierendonck (2018). Psychological Bulletin, 144(9), 972-977. https://doi.org/10.1037/bul0000165

Pavlov, Y. G., & Kotchoubey, B. (2022). Oscillatory brain activity and maintenance of verbal and visual working memory: A systematic review. Psychophysiology, 59(5), e13735. https://doi.org/10.1111/psyp.13735

Pinnock-Branford, A., Leandro-Argüello, P., Sánchez-Burgos, M., Fernández-Castro, T., & Mora-Benambourg, J. M. (2021). La eficacia de la biorretroalimentación como tratamiento para el asma. Una revisión sistemática. Wimb Lu, 16(1), 29-50. https://doi.org/10.15517/wl.v16i1.45971

Plaska, C. R., Ng, K., & Ellmore, T. M. (2021). Does rehearsal matter? Left anterior temporal alpha and theta band changes correlate with the beneficial effects of rehearsal on working memory. Neuropsychologia, 155, 107825. https://doi.org/10.1016/j.neuropsychologia.2021.107825

Rasoulzadeh, V., Sahan, M. I., Van Dijck, J.-P., Abrahamse, E., Marzecova, A., Verguts, T., & Fias, W. (2021). Spatial Attention in Serial Order Working Memory: An EEG Study. Cerebral Cortex, 31(5), 2482-2493. https://doi.org/10.1093/cercor/bhaa368

Raye, C. L., Johnson, M. K., Mitchell, K. J., Greene, E. J., & Johnson, M. R. (2007). Refreshing: A Minimal Executive Function. Cortex, 43(1), 135-145. https://doi.org/10.1016/S0010-9452(08)70451-9

Rodríguez-Villagra, O. A., Göthe, K., Oberauer, K., & Kliegl, R. (2013). Working memory capacity in a go/no-go task: Age differences in interference, processing speed, and attentional control. Developmental Psychology, 49(9), 1683-1696. https://doi.org/10.1037/a0030883

Rutar Gorišek, V., Belič, A., Manouilidou, C., Koritnik, B., Repovš, G., Bon, J., Žibert, J., & Zidar, J. (2015). The electrophysiological correlates of the working memory subcomponents: Evidence from high-density EEG and coherence analysis. Neurological Sciences, 36(12), 2199-2207. https://doi.org/10.1007/s10072-015-2337-4

Schneider, D., Zickerick, B., Thönes, S., & Wascher, E. (2020). Encoding, storage, and response preparation—Distinct EEG correlates of stimulus and action representations in working memory. Psychophysiology, 57(6), e13577. https://doi.org/10.1111/psyp.13577

Sgarbossa, N., Ibáñez Cobaisse, M., González Cianciulli, G., Bracchiglione, J., & Franco, J. V. A. (2022). Systematic reviews: Key concepts for health professionals. Medwave, 22(09), e2622-e2622. https://doi.org/10.5867/medwave.2022.09.2622

Spironelli, C., Penolazzi, B., Vio, C., & Angrilli, A. (2006). Inverted EEG theta lateralization in dyslexic children during phonological processing. Neuropsychologia, 44(14), 2814-2821. https://doi.org/10.1016/j.neuropsychologia.2006.06.009

Spitzer, B., & Blankenburg, F. (2011). Stimulus-dependent EEG activity reflects internal updating of tactile working memory in humans. Proceedings of the National Academy of Sciences, 108(20), 8444-8449. https://doi.org/10.1073/pnas.1104189108

Stokić, M., Milovanović, D., Ljubisavljević, M. R., Nenadović, V., & Čukić, M. (2015). Memory load effect in auditory–verbal short-term memory task: EEG fractal and spectral analysis. Experimental Brain Research, 233(10), 3023-3038. https://doi.org/10.1007/s00221-015-4372-z

Published

2025-06-30

How to Cite

Marín-Picado, B., Rodríguez-Villagra, O. A., & González Flores, L. C. (2025). Brain electrical activity of information maintenance mechanisms in working memory: a systematic review. Costa Rican Journal of Psychology, 44(1), 1–31. https://doi.org/10.22544/rcps.v44i01.13